Logarithmic Rules

Logarithm Definition:	$\log_{b} a = m \Leftrightarrow b^{m} = a$	$\log_4 16 = 2$ $4^2 = 16$
Common Logarithm:	$\log_{10} = \log$	
Natural Logarithm:	log _e = In	
Change of Base:	$\log_{b} a = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}$	$\log_5 13 = \frac{\log 13}{\log 5}$
Product Rule:	$\log_b (xy) = \log_b x + \log_b y$	log ₃ (4x) = log ₃ 4 + log ₃ x
Quotient Rule:	$\log_{b} \frac{M}{N} = \log_{b} M - \log_{b} N$	$\log_5 \frac{x}{y} = \log_5 x - \log_5 y$
Power Rule:	$p \log_b M = \log_b M^p$	$4 \log_5 x = \log_5 x^4$
Same Base	$\log_{b} b^{x} = x$ $b^{bog}{}_{b} x$	$\log_3 3^2 = 2$ $7^{\log_7 2} = 2$
Logarithmic Equality	$\log_b x = \log_b y \iff x = y$	If $\log_3 4 = \log_3 y$ Then 4 = y